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Abstract. The effects of free-surface waves on floating structures are of great importance in the offshore industry.
Besides the first-order responses to the waves, second-order effects play a role, in particular in the situation
where an anchored object may be excited in its frequency of resonance. This paper concerns the study of this
phenomenon. Two different approaches are developed, each with its own advantage. Special attention is paid to
excitation forces generating the motions; also a theory to determine the inviscid damping that limits the extreme
excursions is discussed. Numerical results are presented for a sphere, and numerical results for two classes of
tankers, namely for a VLCC and a LNG-carrier, and a semi-submersible are compared with experimental data
obtained at the Maritime Research Institute in the Netherlands (MARIN).
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1. Introduction

Traditionally there is interest in the second-order forces acting on ships sailing with a constant
forward speed in a wave field. The resulting added resistance is of importance because it
generates a substantial speed loss of the vessel. In 1924 Suyehiro [1] discussed the drift of
ships caused by rolling among waves. He measured the steady drift force experienced by
a ship while rolling in waves. Later on Watanabe [2] and Havelock [3, 4, 5] studied these
phenomena and laid the basis for a mathematical theory. Finally, in the paper of Maruo [6]
in 1960 a thorough mathematical theory is formulated. Newman [7] extended the theory to
slender ships and compared with experimental results. Faltinsen and Michelsen [8] extended
the formulation to the case of finite water depth at zero forward speed.

About thirty years ago the tanker size increased and it became necessary to load and unload
in open sea near the coast. It was noticed that the resonance of the mooring could hamper
the operation severely. Although the resonance frequency of the moored system was well
below the frequency band of the incident wave field, severe excitations could occur. In 1970
Hsu and Blenkarn [9] studied this phenomenon and Remery and Hermans [10] performed
some additional tests to shed light on the source of this phenomenon. They also studied the
underlying physical process and presented a preliminary theory on slow drift oscillations. The
first suggestion was to use the constant drift force obtained by Newman [7] and Faltinsen and
Michelsen [8] for the excitation force at low frequency. This leads to satisfying results in many
cases. However, to cover all situations the low-frequency drift force has to be computed. In
1980 Pinkster [11] completed the theory and computation of the low-frequency second-order
wave-excitingforceson floating structures. The second-order effects due to the first-order
potential and motions were taken completely into account in his computations, but the effect
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182 Low-frequency second-order wave-drift forces and damping

of the second-order potential consisted of a rough approximation. Meanwhile many authors
studied this phenomenon.

A problem addressed and solved provisionally in the paper of Remery and Hermans [10]
concerns the damping at the resonance frequency. An extensive study of this phenomenon was
published in 1988 by Wichers [12]. The main result is that for moderate sea states the damping
is dominated by viscous effects, however, in survival states the wave-drift damping due to the
velocity dependency of the wave-drift force becomes dominant. A suggestion to compute
this damping by means of a perturbation approach was presented in 1985 by Huijsmans and
Hermans [13]. Hermans [14] and Grue and Palm [15] applied the approach of Newman [7]
to compute the speed-dependent wave-drift force by which the wave-drift damping can be
computed. In the derivation of Hermans [14] a slight error occurs, but finally the two different
derivations lead to the same analytic expression for the second-order wave force influenced
by a small constant velocity field [16]. Especially in the frequency range where the first-
order motions are dominant, the second-order forces must be calculated taking into account
the complete first-order excitation and reaction potentials at low speed; also, for finite water
depth the second-order potential may lead to a contribution that cannot be ignored. Grue [17]
shows that for the computation of second order moments the second-order potential cannot be
ignored.

2. Mathematical formulation of the potentials

In the literature a variety of methods to compute the first-order potentials can be found. For
zero forward speed the most commonly used method is based on the application of Green’s
theorem to the fluid domain, or based on a source distribution, using the harmonic Green’s
function, which obeys the linearised free-surface condition. Some computer codes are com-
mercially available; they treat both the infinite-depth or the finite-depth case. Newman [18, 19]
and Noblesse [20], independently, made ingenious fast codes to compute the Green’s function
and its derivatives. The sources of the codes are either commercially or freely available.
The panel-method codes developed with these source functions vary widely from zero order
(constant) to higher-order methods; there are also codes making use of spline approximations.

Meanwhile codes are developed that make use of simple Rankine, 1/r sources, so they
consist of source distributions over the object and the free surface; one of the first successful
efforts can be found in the work of Yeung [21]. This can be done in the frequency-domain or
in the time-domain. The linearised versions consider the free-surface source distribution along
z = 0, while the nonlinear versions may have a distribution at the actual free surface. In the
latter case the free surface is determined iteratively. Also, the source strength on a panel can
be described by lower- or higher-order appoximations.

To compute the diffraction of waves in a current or by a steadily moving object there is a
Green’s function available that obeys the linearised free-surface condition for harmonic waves
in a uniformly constant flow. Some attemps to use this Green’s function in a similar code as
described above did not give rise to a substantional improvement of the results obtained by
the classical widely available strip-theory. This strip-theory, in principle, makes use of the
slenderness or thinness. Hence, the stationary potential is approximated by the unperturbed
flow. This theory leads to an approach that is two-dimensional, sideways, in nature. Three-
dimensional effects are taken into account by means of the interaction of adjacent strips. The
modified strip theory gives fairly accurate results for a large class of ships. However, in the
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Figure 1. Coordinate system.

case of full-bodied ships and offshore structures this appraoch is not reliable. The frequency-
domain and time-domain methods based on a superposition of the double body potential and
the wave potential may lead to a significant improvement.

In the next subsections we discuss two different ways to compute the first-order diffraction
and radiation potential superimposed on the double-body potential. These approaches are
suitable for low to moderate forward velocity or current. At high speed it is expected that
these methods have to improve. We expect that for extreme cases, where the steady wave
pattern is significant, even for low wave heights, the wave potential has to be superimposed on
top of the nonlinear steady potential. Some preliminary results are available where the RAPID
results of Raven [22] are used as steady potential.

2.1. SLOW-SPEED APPROXIMATION

We first derive the equations for the potential function8(x, t), such that the fluid velocity
u(x, t) is defined asu(x, t) = ∇8(x, t). The total potential function will be split up in a
steady and a non-steady part in a well-known way

8(x, t) = Ux + φ(x;U)+ φ̃(x, t;U).

In this formulationU is the incoming unperturbed velocity field, obtained by considering a
coordinate system fixed to the ship moving under a drift angleα. In our approach this angle
need not be small. The time-dependent part of the potential consists of an incoming, diffracted
and radiated (for six modes of motion) wave

φ̃(x, t;U) = φ̃ inc(x, t;U)+ φ̃(7)(x, t;U)+
6∑
i=1

φ̃(i)(x, t;U),

at frequencyω = ω0 + k0U cosβ, whereω0 and k0 = ω2
0/g are the frequency and wave

number in the earth-fixed coordinate system, whileω is the frequency in the coordinate system
fixed to the ship, see Figure 1. The waves are incoming under an angleβ, with respect to the
current. To compute the wave-drift forces all these components will be taken into account.

The equations for the total potential8 can be written as:18 = 0 in the fluid domainDe.
At the free surface we have the dynamic and kinematic boundary conditions

gζ +8t + 1
2∇8 · ∇8 = Cst

8z −8xζx −8yζy − ζt = 0

}
at z = ζ. (1)
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184 Low-frequency second-order wave-drift forces and damping

At the body surface we have

∂8

∂n
= V · n,

whereV is the body velocity relative to the average body-fixed coordinate system.
We assume that the waves are high compared to the Kelvin stationary wave pattern, but that
they are both small in nature, hence the free-surface boundary condition can be expanded at
z = 0. We first eliminateζ , which leads to the following boundary condition

∂2

∂t2
8+ g ∂

∂z
8+ ∂

∂t
(∇8 · ∇8)+ 1

2∇8 · ∇[∇8 · ∇8] = 0 atz = ζ. (2)

To compute the first-order wave potential the free surface has to be linearised first. We assume
φ̃(x, t;U) = φ(x;U)exp(−iωt), then fori = 1, . . . ,6 the free-surface condition atz = 0
can be written as

−ω2φ − 2iωUφx + U2φxx + gφz = D(U ;φ){φ} at z = 0, (3)

while for the diffracted potentialφ(7) the last term has to be replaced byD(U ;φ){φ inc+φ(7)}
and whereD(U ;φ) is the following linear differential operator acting onφ. The quadratic
terms inφ are neglected. Thus

D(U ;φ){φ} = −iω{(φxx + φyy)φ + 2∇φ · ∇φ}
+(2Uφx + φ2

x)φxx + 2(U + φx)φyφxy + φ2
yφyy

+(3Uφxx + φxφxx + φyφxy)φx + (2Uφxy + φxφxy + φyφyy)φy.
The linear problems forφ(i) with i = 1, . . . ,7 are solved by means of a source distribution
along the ship hull, its waterline and the free surfacez = 0. We write for each potential
function

4πφ(x) = −
∫ ∫

S

σ (ξ)G(x, ξ)dSξ + U
2

g

∫
WL

αnσ (ξ)G(x, ξ )dsξ

+ iω
g

∫ ∫
FS

G(x, ξ)D{φ} dSξ for x ∈ De. (4)

The functionG(x, ξ) is the Green’s function that obeys the free surface condition (3) withD
equal to zero andαn = ex · n, whereex equals the unit vector in thex-direction. In general,
the boundary conditions on the ship are given in the form

∇φ(i) · n = V (i)(x) for x ∈ S and i = 1, . . . ,7,

whereV (i) is the normal velocity due to the motion in theith mode withi = 1, . . . ,6 and
V (7) equals the normal velocity of the incident oscillating field. SoV (i), with i = 1, . . . ,3,
correspond to the translation componentsX = X̃ exp(−iωt) and, withi = 4, . . . ,6, to com-
ponents of the rotational motion� = �̃exp(−iωt) relative to the centre of gravityxg of the
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body. The combined displacement vector is given byα = X+�× (x− xg) = α̃ exp(−iωt).
In general notation we write

∂φ

∂n
= −iωα̃ · n+ [(∇(Ux + φ) · ∇)α̃ − (α̃ · ∇)∇(Ux + φ)] · n.

This leads to an equation for the source strength, where we omitted the indexi again

−2πσ(x)−
∫ ∫

S

σ (ξ)
∂

∂nx
G(x, ξ)dSξ + U

2

g

∫
WL

αnσ (ξ)
∂

∂nx
G(x, ξ)dsξ

+ iω
g

∫ ∫
FS

∂

∂nx
G(x, ξ )D{φ} dSξ = 4πV (x) for x ∈ S. (5)

This equation can be solved iteratively in principle; however, an accurate numerical evaluation
of the complete Green’s function is rather elaborate. Therefore we make use of the fact thatU

is small, keeping in mind that there are two dimensionless parameters that play a role, namely
τ = ωU/g � 1 andν = gL/U2 � 1. The source potentials and the strengths can be
evaluated as perturbation series with respect toτ

σ (ξ) = σ0(ξ)+ τσ1(ξ)+ σ̂ (ξ;U), (6)

φ(x) = φ0(x)+ τφ1(x)+ φ̂(x;U), (7)

whereσ̂ andφ̂ areO(τ2) asτ → 0, while the expansion ofG is less trivial. We write

G(x, ξ ;U) = −1

r
+ 1

r ′
− {ψ0(x, ξ)+ τψ1(x, ξ)+ · · ·

· · · ψ̃0(x, ξ )+ ν−1ψ̃1(x, ξ)+ · · ·}. (8)

The first term between brackets corresponds to the Green’s function at zero forward speed, for
which there exist several fast computer codes. The second term is the modification due to small
values of the forward velocity. Computations can be carried out by means of a modification
of the existing fast code. Nonuniformities can be taken care of as described by Huijsmans
[23, 24]. The third term between brackets is the one that describes the Kelvin effect on the
wave Green’s function. In (Hermans [25]) we explained how one takes care of this term that is
linear inν and therefore tends to infinity asU goes to zero. In practice the first two terms are
computed in the expansions of the potentials and the source strengths for the excitation and
the six modes of the motion. This approach is easily applied to the situation of deep water. For
finite water depth the evaluation of the Green’s function for finite velocities leads to terms that
are not as easy to compute as in the deep-water case, where all the expressions needed can be
expressed in derivatives of the zero-speed Green’s function.

2.2. TIME-DOMAIN SIMULATION

Recently Prins and Hermans [26, 27, 28, 29] developed a time-domain method to compute
the first-order time-dependent part of the potential function. With this approach the complete
potential function is written as follows

8(x, t) = 8(x)+ ψ(x, t).
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186 Low-frequency second-order wave-drift forces and damping

For small values of the forward velocity the stationary potential8(x) is approximated by the
double-body potential with zero vertical velocity at the mean free surfacez = 0. We insert
this expression in Equation (2) and linearise the resulting expression atz = 0 and obtain

∂2ψ

∂t2
+ g ∂ψ

∂z
+ 2∇8 · ∇ ∂ψ

∂t
+ 1

2∇(∇8 · ∇8) · ∇ψ +∇8 · ∇(∇8 · ∇ψ)

−1
2(∇8 · ∇8− U2)

(
∂2ψ

∂z2
+ 1

g

∂3ψ

∂t2∂z

)

−∂
28

∂z2

(
∇8 · ∇ψ + ∂ψ

∂t

)
= 0 atz = 0. (9)

The solution method is based on the applications of Green’s theorem for the whole fluid
domain

1
2ψ(x, t) =

∫
∂V

(
ψ(ξ , t)

∂G(x, ξ)

∂nξ
− ∂ψ(ξ , t)

∂nξ
G(x, ξ)

)
dS. (10)

In this formulation the Green’s function is chosen as the point-source atx = ξ obeying the
bottom condition, hence

G(x, ξ) = 1

4π

(
1

|x − ξ | +
1

|x − ξ ∗|
)
,

where|x − ξ∗| is the distance to the source point reflected with respect to the flat bottom
at z = −h. The integration is taken over the object, the free surfacez = 0 and the outer
closing boundaries. If we assume the time-dependent potential to be a superposition of the
nondisturbed incident wave, the diffracted wave potential and the radiation (motion) potential
we can compute the diffracted or the radiated by imposing the free surface condition and the
body boundary condition. The closing boundaries need some extra care; we should impose
a proper non-reflecting boundary condition. The differentiations along the free surface are
handled by means of a central or upwind difference scheme, while the time differentiation
is treated with an implicit difference scheme. In principle, we want to be able to compute
the disturbance due to a general non-harmonic incident wave. We also want to keep the
computing area as small as possible. This makes the choice of the non-reflecting boundary
condition at the outer boundaries non-trivial. For harmonic waves and the boundaries far away
we may choose a Sommerfeld-type condition, taking care of the two families of waves in
the uniform current time harmonic case. This has been done by Prins [28]. Sierevogel and
Hermans [30, 31] implemented a general formulation for the general case. Several methods
are available, the method we implied is of the class of semi-discrete DtN-method, see Keller
and Givoli [32]. The second-order time-derivative at the free surface is written by means of an
explicit difference scheme att = (n+ 1)1t as follows

ψn+1
z + µψn+1 = L(ψn,ψn−1, . . .), (11)

whereµ = 2/g(1t)2 andL(ψn,ψn−1, . . .) is a linear operator depending on previous time
steps only. Furthermore, the method is based on the application of Green’s theorem to the
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exterior domain with a proper choice of the Green’s function. The discretisation of the exterior
free surface can be rather coarse, because the integration of the Green’s function over an
element is once done analytically. The potential is computed explicitely. This computation
consists of a few matrix vector multiplications during each time step.

The number of unknowns in the equations is increased by a small amount, namely the
number of elements at the outer boundaries. This approach is very efficient and it leads to
a minor increase of computation time. The outer boundaries can be chosen at a rather small
distance, depending on the wavelength and the steady velocity disturbance. An extensive study
of non-reflecting boundary conditions for the acoustic case can be found in the book by Givoli
[33].

3. Wave-drift forces and moments

In the zero-forward-speed case the constant second-order drift forces and moments can be
computed as soon as the first-order potentials and motions are known. To compute the low-
frequency drift forces and moments the second-order potential, depending on the difference
frequency is also needed. Especially, if the water depth is finite, its contribution is consider-
able. If the forward speed is small, Grue [15] shows that the constant-drift moments depend
on the second-order potential just as well. His conclusion that, depending on the way one
calculates the constant drift forces, one has to include the second-order potential, is inconsis-
tent. This is due to the treatment of free surface. In the derivation of the so-called far-field
formulation one uses the correct no-flux condition at the exact free surface, while in the local
pressure integration formulae are derived, making use of a free surface condition atz = 0. In
the case of forward speed the second-order effects must be taken into account in the calculation
of the low-frequency drift forces, as well. The phenomenon of drift force is described in the
frequency-domain, therefore the time-domain method described in Section 2.2 to compute the
potentials can be used if one takes harmonic waves and motions as input signals. In this paper
we make use of the results of the codes described in Section 2.1 or 2.2.

The constant and low-frequency drift forces and moments influenced by forward speed can
be computed by means of pressure integration along the actual hull. This pressure integration
containes the wave frequencies and their sum and difference frequencies. To obtain the low-
frequency and constant second-order forces and moments the wave frequencies and their sum
frequencies are filtered out. This procedure is easily carried out in the time-domain. First we
discuss the method consisting of pressure integration over the actual ship hull. The mean drift
force can also be obtained by means of application of conservation of momentum in the fluid
domain; this leads to expressions where the far-field evaluation of the first order potentials are
used. This method is discussed secondly.

3.1. CONSTANT AND LOW-FREQUENCY DRIFT FORCES BY MEANS OF LOCAL

EXPANSIONS

First we discuss the second-order slowly varying drift forces. The forces acting on the hull can
be obtained by integration of the pressure along the exact wetted hull surfaceS̃. The pressure
on the surface is given by Bernoulli’s equation

p(x, t) = −ρ
(
∂8

∂t
+ 1

2∇8 · ∇8+ gz− 1
2U

2

)
on S̃.
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188 Low-frequency second-order wave-drift forces and damping

The force acting on the hull is obtained by integration of the pressure over the exact surface

F =
∫
S̃

pndS. (12)

This may look an easy operation, but it is not, because the linearised potentials are computed at
the mean hull surface and the integration goes up to the free water surface, while linearisation
with respect toz = 0 has taken place. Hence the expression for the force has to be perturbed
to integrals over the mean hull surfaceS and the unperturbed water-line. We assume that the
total displacement of a pointx of the surface is given in linearised form as

α = X +�× (x − xg), (13)

with X the translational and� the rotational motion of the body relative to its center of
gravity xg. At this point several assumptions are made, but some of them are more or less
questionable. The pressure is expanded in a Taylor series around the average surfaceS. This
can be done because the pressure is a differentiable function ofx.

pS̃ = pS + α · ∇pS + 1
2(α · ∇)2pS +O(|α|3). (14)

A step that poses some geometrical limitations, like a vertical ship hull at the free surface, on
the applicablity of this approach is the evaluation of the integral∫

S̃

f (x)dS ≈
∫
S

f (x)dS +
∫
wl

∫ ζ

α3

f (x)dz dl. (15)

We assume the height of the waves and the motions of the hull to be smallO(ε), hence we
expand all quantities with respect toε as follows

8(x, t) = 8(x)+ εψ(1)(x, t)+ ε2ψ(2)(x, t)+O(ε3),

ζ(x, y, t) = ζ (x, y) + εζ (1)(x, y, t) + ε2ζ (2)(x, y, t) +O(ε3),

pS = p(x)+ εp(1)(x, t)+ ε2p(2)(x, t)+O(ε3),

X = εX(1) + ε2X(2) + O(ε3),

� = ε�(1) + ε2�(2) +O(ε3),

x − xg = x − xg + ε�(1) × (x − xg)+ ε2�(2) × (x − xg)+O(ε3),

n = n+ ε�(1) × n+ ε2�(2) × n+O(ε3),

where the second-order terms likeψ(2)(x, t) also contain a stationary part due to the quadratic
terms of wave components with itself. The first terms in the perturbation series are time
independent, so

ζ = 1
2(∇8 · ∇8− U2)
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is the stationary wave height. We consider small steady velocities which are considered to be
small enough to linearise the free surface as we described. Substituting in the Taylor series for
the pressure at the actual hull surface and collecting equal powers ofε, we get

pS̃ = p,

p
(1)
S̃
= p(1) + {X(1) +�(1) × (x − xg)} · ∇p,

p
(2)
S̃
= p(2) + {X(2) +�(2) × (x − xg)+�(1) × [�(1) × (x − xg)]} · ∇p
+ {X(1) +�(1) × (x − xg)} · ∇p(1)
+ 1

2{[X(1) +�(1) × (x − xg)] · ∇}2p.
From Bernoulli and the perturbation series for the potentials we get for the components of the
pressure on the mean wetted surface

p = −ρ(gz0+ 1
2(∇8 · ∇8− U2)),

p(1) = −ρ
(
∇8 · ∇ψ(1) + ∂ψ

(1)

∂t

)
,

p(2) = −ρ
(
∂ψ(2)

∂t
+ 1

2∇ψ(1) · ∇ψ(1) +∇ψ(2) · ∇8
)
.

We carry out the pressure integration along the hull and apply high-frequency filtering in the
case of the multi-frequency case and averaging in the case of one harmonic wave. We obtain
for the second-order low-frequency or constant drift force

F (2) = 1
2ρg

∫
WL

(ζ (1) − α(1)3 )2ndl +�(1) ×M d2X(1)

dt2

−ρ
∫
S

{
(α(1) · ∇)

(
∂ψ(1)

∂t
+∇ψ(1) · ∇8

)
+ 1

2∇ψ(1) · ∇ψ(1)

+∂ψ
(2)

∂t
+∇ψ(2) · ∇8

}
ndS. (16)

For the second-order moment we obtain a similar expression

M(2) = 1
2ρg

∫
WL

(ζ (1) − α(1)3 )2(x − xg)× ndl +�(1) ×M d2�(1)

dt2

−ρ
∫
S

{
(α(1) · ∇)

(
∂ψ(1)

∂t
+ ∇ψ(1) · ∇8

)
+ 1

2∇ψ(1) · ∇ψ(1)

+∂ψ
(2)

∂t
+∇ψ(2) · ∇8

}
(x − xg)× ndS. (17)

The influence of the second order potentials in both the second-order forces and moments
is considerable if one considers finite depth. Their influence on the second-order constant
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190 Low-frequency second-order wave-drift forces and damping

drift forces is negligible as follows from the analysis based on the far-field approximations,
while in the computations of the constant second-order moments they may not neglected as
is described by Grue [15]. Many available computer codes take care of these effects in an
approximate way, see, for instance, the work of Pinkster [11].

3.2. CONSTANT DRIFT FORCES BY MEANS OF FAR-FIELD EXPANSIONS

Here we are mainly interested in the constant component of the drift force. In this section we
apply a method that leads to results that are more accurate numerically. The direct pressure
integration needs velocities obtained by differentiation of the potentials, depending on the
numerical method to obtain the source stengths. This may lead to results that are not accurate
enough for our purpose. Our choice is not to go to higher-order panel methods in the solver, but
to use the results for the potentials and to avoid differentiation by applying the conservation of
impulse for the fluid domain. This method is the one that in the past led to the first results of
the drift forces. Maruo [6] and later Newman [7] have derived an expression for the wave-drift
forces and moments in still water. In this paper we restrict ourselves to the determination of
the mean drift forces. For a discussion of the drift moment in current we refer to Grue and
Palm [34].

The components of the horizontal mean drift forces,Fx andFy,

Fx = −
∫ ∫

S∞
[p cosθ + ρVR(VR cosθ − Vθ sinθ)]R dθ dz, (18)

Fy = −
∫ ∫

S∞
[p sinθ + ρVR(VR sinθ + Vθ cosθ)]R dθ dz, (19)

wherep is the first-order hydrodynamic pressure,V is the fluid velocity with radial and
tangential componentsVR ,Vθ and S∞ is a large cylindrical control surface with radiusR
in the ship-fixed coordinate system. Faltinsen and Michelsen [8] derive from these formulas
expressions in terms of the source densities of the first-order potentials in the case of zero
speed at finite depth. We follow a similar approach from

σ = σ (7) +
6∑
j=1

σ (j)αj ,

whereαj = αj e−iωt , j = 1(1)6 are the six modes of motion and the superscript 7 refers to
the diffracted component of the source strength. However, in our case, the velocity potential
has the form

8(x, t) = Ux + φ(x;U)+ φ(x;U)e−iωt

= Ux + φ(x;U)+
φ inc(x;U)+ φ(7)(x;U)+

6∑
j=1

φ(j)(x;U)αj
e−iωt , (20)

where the potentialsφ(j)(x;U), j = 1,7 have the form (4) and are the potentials due to
the motions and the diffraction. We assume that the potentials and the source strengths are
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expressed in terms of perturbation series (6, 7), and that the first two terms are known at this
stage.

In the far fieldR � 1 we neglect the influence of the stationary potentialφ(x;U) in (20);
hence we approximate (20) by

8(x, t) = Ux + gζa
ω0

exp{k1(β)z+ i[k1(β)(x cosβ + y sinβ)− iωt]}

+F(θ;U)eiS(θ;U)
√

1

R
exp{k1(θ)z+ i[k1(θ)R − iωt]}. (21)

Hereζa is the amplitude of the incoming wave in the directionβ and the wave numberk1(β) =
k0. However, in the local coordinates we write

k1(β) = g + 2ωU cosβ − g√1+ 4τ cosβ

2U2 cos2 β
≈ k̃(1− 2τ cosβ)+O(τ 2) = k0+O(τ2),

where we use the notatioñk = ω2/g. Notice that this wave number is defined in the ship-
fixed coordinate system and is different fromk0 = ω2

0/g, as defined before in the earth-fixed
coordinate system. The functionF(θ)eiS(θ) results from the asymptotic expansion of the far
field potentials in (20) with

4πφ(j)(x;U) =
∫ ∫

S

σ (j)(ξ)9(x, ξ)dSξ

−2iω

g

∫ ∫
FS

∇φ · ∇φ(j)9(x, ξ)dSξ , (22)

where9(x, ξ) is the asymptotic expansion of the Green’s function in the far field

9(x, ξ) ≈ 2πi

√
2

πR

exp{i[k1(θ)R − π
4 ]}

[1+ 2U
g
(ω− k1(θ)U cosθ) cosθ]

×√k1(θ)exp{k1(θ)(z+ ζ )− ik1(θ)(ξ cosθ + η sinθ)}, (23)

with the localk1(θ) wave number defined as

k1(θ) = g + 2ωU cosθ − g√1+ 4τ cosθ

2U2 cos2 θ
. (24)

Due to the fact that the function∇φ(ξ) decays rapidly as|ξ | → ∞, it can be shown that the
last term in (22) is approximated correctly with∇φ(j) replaced by∇φ(j)0 . This leads to

F(θ;U)eiS(θ;U)

=
√
k1(θ)

2π

{
eπi/4

1+ 2U
g
(ω− k1(θ)U cosθ) cosθ

}
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×
{∫ ∫

S

(σ0(ξ)+ τσ1(ξ)+ · · ·)exp{k1(θ)ζ − ik1(θ)(ξ cosθ + η sinθ)} dSξ

− 2iτ
∫ ∫

FS

∇φ
U
· ∇φ(T )0 exp{−ik1(θ)(ξ cosθ + η sinθ)} dSξ

}
, (25)

where

φ
(T )
0 = φ(7)0 +

6∑
j=1

φ
(j)

0 αj .

It is obvious that (25) can be written in the form

F(θ;U)eiS(θ;U) = (1− 2τ cosθ)F0(θ)eiS0(θ) + τF1(θ)eiS1(θ) +O(τ2). (26)

The functionsFi(θ) andSi(θ) contain the local wave numberk1(θ). The upper boundary of
integration in (18) and (19) is the free surface

ζ = 1

g
<[(iωφ(x, y,0) − Uφx(x, y,0))e−iωt ].

It follows from the pressure term that we can write∫ ζ

−∞
pdz = 1

2ρgζ
2− 1

2ρ

∫ 0

−∞
(| V |2 −U2)dz.

We find the following expression forFx

Fx = −1
4ρ

∫ 2π

0
k̃φφ∗R cosθ dθ + 1

2ρτ

∫ 2π

0
=(φφ∗x cosθ + φφ∗y sinθ)R dθ

+1
4ρ

∫ 2π

0

∫ 0

−∞

[(
1

R2
φθφ

∗
θ − φRφ∗R + φzφ∗z

)
R cosθ

+(φRφ∗θ + φθφ∗R) sinθ

]
dθ dz (27)

and forFy:

Fy = −1
4ρ

∫ 2π

0
k̃φφ∗R sinθ dθ − 1

2ρτ

∫ 2π

0
=(φφ∗x sinθ − φφ∗y cosθ)R dθ

+1
4ρ

∫ 2π

0

∫ 0

−∞

[(
1

R2
φθφ

∗
θ − φRφ∗R + φzφ∗z

)
R sinθ

−(φRφ∗θ + φθφ∗R) cosθ

]
dθ dz.
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In these expressions the asterisks denote the complex conjugate. The integration with respect
to z needs some extra attention due to the fact that the exponential behaviour of the incident
wave and the radiated or diffracted wave is different, due to the dependence of the wave
number onβ andθ , respectively. The functionφ follows from (21)

φ = gζa

ω0
exp{k1(β)z+ ik1(β)(x cosβ + y sinβ)}

+F(θ;U)eiS(θ;U)
√

1

R
exp{k1(θ)z+ ik1(θ)R}. (28)

A closer look at (28) and (27) shows that the contributions toFx consist of two parts. The first
one,F (1)x , originates from those parts of the cross products that behave likeR−1/2, while the
second one,F (2)x , originates from those square terms in (27) that behave likeR−1. We formally
write

Fx = F (1)x + F (2)x . (29)

After some lengthy manipulations and asymptotic expansion for large values ofR we obtain
for the mean surge forceF (1)x and the mean sway forceF (1)y

F (1)x ≈ A

√
2π

k̃
F (β∗;U) cos(S(β∗;U)+ 1

4π) cosβ +O(τ2) (30)

and

F (1)y ≈ A

√
2π

k̃
F (β∗;U) cos(S(β∗;U)+ 1

4π) sinβ +O(τ2), (31)

where

A = −ρω
2

2ω0
ζa and β∗ = β − 2τ sinβ.

The second part of the wave-drift force may be analysed in the same way. We obtain

F (2)x ≈ −1
4ρk̃

∫ 2π

0
F 2(θ;U){cosθ − 2τ sin2 θ} dθ +O(τ2) (32)

and

F (2)y ≈ −1
4ρk̃

∫ 2π

0
F 2(θ;U){sinθ(1+ 2τ cosθ)} dθ +O(τ2).

For the zero-speed case this result is in accordance with Maruo [6] and for the general situation
with Nossenet al. [35] if we change some signs due to the fact that our ship is sailing to the left.
The formulation of the second-order moment acting on a vessel with constant forward speed
and waves can be derived in a similar way [36]. Grue [17] also studied the situation where the
vessel rotates slowly. This is of importance in case the vessel, moored to a single point, rotates
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slowly with large yawing angles. As noticed in the experimental work of Wichers [12] for the
description of the low-frequency yaw motions potential effect are of a minor importance. The
flow is largely dominated by viscous effects, especially in the case flow separation occurs.
To determine these motions one has to rely on experiments both for the excitation and the
coefficients in the equations of motion.

4. Wave-drift damping

We now consider the situation that a ship is moored to a soft spring system in waves. We
consider the motion, due to head seas, in the longitudinal direction, which is thex-direction.
Due to the low-frequency drift force the ship is excited in the eigen-frequency of the moored
system. The damping coefficient for this low frequency oscillatory drift motion results from
the speed dependency of the drift force. One must realise that this hypothesis is to be checked.
In fact the damping equals to the out-of-phase, with respect to the motion, part of the slowly
oscillating drift force. In a paper by Newman [37] the formal solution of this problem is
described. Due to the fact that the forward velocity is low, we assume that an approximation
of this damping can be obtained by the following approach

bxx = −∂F x
∂U
|U=0, (33)

whereFx is computed in regular waves with fixed wave frequency. We can use the results
of Section 3.1 or the results of Section 3.2, where the drift forces are described at constant
forward speed. Aranha [38] has presented an approximation for the wave drift damping of the
following form

bxx = k0
∂F x(ω0)

∂ω0
+ 4ω0

g
Fx(ω0). (34)

This expression is sometimes approximated at high frequencies by

bxx ≈ 4ω0

g
Fx(ω0). (35)

However, Equation (34) is derived for the two-dimensional case and in three-dimensions it is
not fully justified. In some cases it leads to a good numerical approximation. A drawback is
that the dependency of the drift forces on the first-order-motion amplitudes and phases is not
properly taken into account. This may lead to a large deviation especially if the drift force is
rather peaked due to motion effects. We combine (30) with (32) and make use of conservation
of energy, as suggested by Maruo [6], and obtain

Fx(ω;U)

≈ −1
4ρk̃

∫ 2π

0
F 2(θ;U)(cosθ − cosβ − 2τ sin2 θ)dθ +O(τ2)

≈ Fx(ω0)(1+ 2τ)+ 1
2ρk0τ

∫ 2π

0

{
sin2 θF 2(θ)− g

ω0
F(θ;U)

×∂F(θ;U)
∂U

(cosθ − cosβ)
}

dθ. (36)
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This formulation can be rewritten with (26). In this case we have

Fx(ω;U) ≈ −1
4ρk̃

∫ 2π

0
F 2

0 (θ)(cosθ − cosβ)dθ

+1
4ρk̃τ

∫ 2π

0
{4 cosθ(cosθ − cosβ)− 2 sinθ2}F 2

0 (θ)dθ

−1
2ρk̃τ

∫ 2π

0
F0(θ)F1(θ) cos(S0(θ)− S1(θ))

×(cosθ − cosβ)dθ +O(τ 2). (37)

If we use Equation (36), the damping in thex-direction can be written as follows

bxx = 2ω0

g

{
Fx(ω0)+ ρk0

4

∫ 2π

0

{
sin2 θF 2

0 (θ)−
g

ω0
F0(θ)

×∂F(θ;0)
∂U

(cosθ − cosβ)
}

dθ
}
. (38)

In the same way we find an expression forbxy

bxy = 2ω0

g

{
Fy(ω0)− ρk0

4

∫ 2π

0

{
sinθ cosθF 2

0 (θ)+
g

ω0
F0(θ)

×∂F(θ;0)
∂U

(sinθ − sinβ)

}
dθ

}
. (39)

With the time-domain computer program we carried out the computations for the drift forces
and wave-drift damping in an independent way. The results are shown in Figure 2; the drift
forces for the sphere at zero and small positive and negative forward speed are shown. In
Figure 3 the wave-drift damping obtained by the approximate formula (34) and the numerical
results are shown. Also, the graph of(4ω0/g)F x(ω0) is shown. The high-frequency limit of
the computed wave-drift damping coincides with the asymptotic value as obtained from the
derivative atτ = 0 of the drift force obtained by an asymptotic ray method [39]; this is a good
check of the numerical results. The results for a VLCC-tanker are for the wave-drift force
shown in Figure 4 and for the corresponding wave-drift damping in Figure 5. It is clear that,
due to resonance in the motion that leads to a large negative gradient in the wave-drift force
locally, the approximate formula is in disagreement with the results computed by the direct
method. The results for wave-drift forces on a LNG-gas carrier are shown in Figure 6. In this
case also the results for rather large values of the forward speed are shown. For this reason
upwind differencing has been used in the time-domain code. The results for the wave-drift
damping in Figure 7 show good agreement with the experiments carried out at MARIN by
Wichers [12]. In Figure 8 the drift force for a semisubmersible is shown. The computations
and experiments were carried out at MARIN by Huijsmans [23]. The computer program is
a frequency-domain program on the basis of a source distribution with the Green’s function
at zero speed as source term. In general, one may say that the computational results fit well
with the experimental results. One must keep in mind that accurate measurements are hard to
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obtain, as can be seen in the scatter of the results by repeated experiments with different wave
heights.

Figure 2.Wave-drift force for the sphere, —Fn = 0,
· – · – · – Fn = 0·005,· · · · · Fn = −0·005.

Figure 3. Wave-drift damping for the sphere withR =
10,· · · · · · (34), · – · – · – (35), — direct computa-
tion.

Figure 4.Wave-drift force for a tanker with, —Fn =
0, —Fn = 0·004,� measurements by Wichers [12].

Figure 5. Wave-drift damping for a tanker, — direct
computations, – – – (34),�measurements by Wichers
[12].

Figure 6.Wave-drift force for a LNG-carrier with, —
Fn = 0, – – – Fn= 0·003, – – –Fn = 0·025,· – · –
· – Fn = 0·05,� measurements by Wichers [12].

Figure 7. Wave-drift damping for a LNG-carrier, —
direct computations,� measurements by Wichers
[12].
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Figure 8. Wave-drift force for a semi submersible forFn = 0 with measuremnts� by Huijsmans [23].

5. Conclusions

For the description of the low-frequency motions of large moored structures several methods
exist. In this paper we have discussed the excitation forces due to waves. These forces can
be derived by means of potential theory. The reaction forces, however, consist of a potential
and a viscous part. The latter is not addressed in this paper and we have restricted ourselves
to the potential part. This part becomes significant especially in survival seastates, due to the
fact that it is proportional to the square of the wave height. To compute these second-order
effects one has to compute the first-order forces and motions first. This can be done either in
the frequency- or the time domain. The wave-drift forces and motions are computed in the
frequency domain. A few computer codes that can compute these low-frequency motions are
available at this moment.

Acknowledgements

Many of the computational and experimental material has been made available by Lisette
Sierevogel, Henk Prins, René Huijsmans and Johan Wichers. Without their support this article
could not have been written as it is.

References

1. K. Suyehiro, On the drift of ships caused by rolling among waves.Trans. Inst. Naval Arch.66 (1924).
2. Y. Watanabe, Some contributions to the theory of rolling.Trans. Inst. Naval Arch.80 (1938).
3. T. H. Havelock, The pressure of water waves upon a fixed obstacle.Proc. R. Soc. LondonA 175 (1940)

409–421.
4. T. H. Havelock, The drifting force on a ship among waves.Phil. Mag.33 (1942) 467–475.
5. T. H. Havelock, Waves due to a floating sphere making periodical heaving oscillations.Proc. R. Soc.A 231

(1955) 1–7.
6. H. Maruo, The drift of a body floating on waves.J. Ship Res.4 (1960) 1–10.
7. J. N. Newman, The drift force and moment on ships in waves.J. Ship Res.11 (1967) 51–60.
8. O.M. Faltinsen and F.C. Michelsen, Motions of large structures in waves at zero Froude number.Proc. Int.

Symp. Dyn. Marine Vehicles and Structures in Waves(1974) 91–106.
9. F. H. Hsu and K. A. Blenkarn, Analysis of peak mooring force caused by slow vessel drift oscillation in

random seas.Proc. 2nd Annual Offshore Techn. Conf., paper OTC 1159 (1970).
10. G. F. M. Remery and A. J. Hermans, The slow drift oscillations of a moored object in random seas.J. Soc.

Petr. Eng.12 (1972) 191–198.

186117.tex; 7/08/1995; 8:46; p.17



198 Low-frequency second-order wave-drift forces and damping

11. J. A. Pinkster,Low Frequency Second Order Wave Excitation Forces on Floating Structures. PhD Thesis,
TU Delft (1980) 204 pp.

12. J. E. W. Wichers,A Simulation Model for a Single Point Moored Tanker. PhD thesis, TU Delft (1988) 243 pp.
13. R. H. M. Huijsmans and A. J. Hermans, A fast algorithm for computation of 3-D ship motions at moderate

forward speed.Proc. 4th Int. Conf. Num. Ship Hydrodyn.Washington (1985) 24–34.
14. A. J. Hermans, Second order wave forces and wave drift damping.Ship Techn. Res. (Schiffstechnik)38 (1991)

163–172.
15. J. Grue and E. Palm, The mean drift force and yaw moment on marine structures in waves and current.J.

Fluid Mech.250 (1993) 121–142.
16. A. J. Hermans and L. M. Sierevogel, A discussion on the second-order wave forces and wave damping.J.

Appl. Ocean Res.37 (1997) 257–264.
17. J. Grue, Interaction between waves and slowly rotating floating bodies. In: J. Grueet al. (eds.).Waves and

Nonlinear Processes in Hydrodynamics. Dordrecht: Kluwer Acad. Publ. (1996) 71–82.
18. J. N. Newman, Algorithms for the free-surface Green function.J. Eng. Math.19 (1985) 57–67.
19. J. N. Newman, The approximation of free-surface Green functions, In: P. A. Martin and G. R. Wickham

(eds.)Wave Asymptotics. Cambridge, Cambridge University Press (1992) 107–135.
20. F. Noblesse, The Green function in the theory of radiation and diffraction of regular water waves by a body.

J. Eng. Math.16 (1982) 137–169.
21. R. W. Yeung,A Singularity-Distribution Method for Free-Surface Flow Problems with an Oscillating Body.

Technical Report NA 73-6, College of Engineering, University of California, Berkeley (1973) 124 pp.
22. H. C. Raven,A Solution Method for the Nonlinear Ship Wave Resistance Problem. PhD Thesis, TU Delft

(1996) 220 pp.
23. R. H. M. Huijsmans and A. J. Hermans, The effect of the steady perturbation potential on the motion of a

ship sailing in random seas.Proc. 5th Int. Conf. Num. Ship Hydrodyn., Hiroshima (1988).
24. R. H. M. Huijsmans,Mathematical Modelling of the Mean Wave Drift Force in Current, a Numerical and

Experimental Study, PhD Thesis, TU Delft (1996) 187 pp.
25. A. J. Hermans and R. H. M. Huijsmans, The effect of moderate speed on the motions of a floating body.

Schiffstechnik34 (1987) 132–148.
26. H. J. Prins and A. J. Hermans, Time domain calculations of the second-order drift force of a floating two-

dimensional object in current and waves.J. Ship Res.38 (1994) 97–103.
27. H. J. Prins and A. J. Hermans, Time domain calculations of the second-order drift force on a floating 3-d

object in current and waves.Ship Technology Research (Schiffstechnik)41 (1994) 85–92.
28. H. J. Prins,Time-Domain Calculations of Drift Forces and Moments. PhD Thesis, TU Delft (1995) 154 pp.
29. H. J. Prins and A. J. Hermans, Wave-drift damping of a 200 kdwt tanker.J. Ship Res.40 (1996) 136–143.
30. L. M. Sierevogel and A. J. Hermans, Absorbing boundary conditions for floating two-dimensional objects in

current and waves.J. Eng. Math.30 (1996) 573–586.
31. L. M. Sierevogel and A. J. Hermans, Time-domain calculations of first- and second-order forces on a vessel

sailing in waves.Proc. 21st Symp. Naval Hydrodyn., Trondheim (1996) 177–188.
32. J. B. Keller and D. Givoli, Exact non-reflecting boundary conditions.J. Comp. Phys.82 (1989) 172–192.
33. D. Givoli,Numerical Methods for Problems in Infinite Domains. Amsterdam: Elsevier (1992) 299 pp.
34. J. Grue and E. Palm, Currents and wave forces on ships and marine structures. In: W. G. Price, P. Temarel

and A. J. Keane (eds.).Dynamics of Marine Vehicles and Structures in Waves. Amsterdam: Elsevier (1991)
167–180.

35. J. Nossen, J. Grue and E. Palm, Wave forces on three-dimensional bodies with small forward speed.J. Fluid
Mech.227 (1991) 135–160.

36. J. Grue and E. Palm, Wave loadings on ships and platforms at a small forward speed. In: S.K. Chakrabarti
et al. (eds). Proc. 10th Int. Conf. on Offshore Mech. Arctic Eng. (1991) 255–263.

37. J. N. Newman, Wave-drift damping of floating bodies.J. Fluid Mech.249 (1993) 241–259.
38. J. A. P. Aranha, A formulation for ‘wave damping’ in the drift for a floating body.J. Fluid Mech. 275 (1994)

147–155.
39. A. J. Hermans, The diffraction of short free-surface waves, a uniform expansion.Wave Motion18 (1993)

103–119.

186117.tex; 7/08/1995; 8:46; p.18


